Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 51: 109756, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38020435

RESUMO

Braided rivers play a significant role in replenishing groundwater, but our understanding of how these recharge rates fluctuate over time remains limited. Traditional techniques for gauging groundwater recharge are ineffective for studying complex braided river systems due to their insufficient spatiotemporal resolution. To address this gap, active-distributed temperature sensing (A-DTS) was used. This method combines fiber optic temperature measurements with an active heat source, enabling quantification of groundwater fluxes. In this study, twelve consecutive A-DTS surveys were conducted on a 100 m long hybrid fiber optic cable to a depth of 5 m beneath the Waikirikiri Selwyn River. This experiment was conducted during a period of relatively stable river stage and flow, highlighting the effectiveness of using A-DTS to measure temporal changes in groundwater recharge.

2.
Nat Commun ; 13(1): 2002, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35443758

RESUMO

Volcanic eruptions that occur without warning can be deadly in touristic and populated areas. Even with real-time geophysical monitoring, forecasting sudden eruptions is difficult, because their precursors are hard to recognize and can vary between volcanoes. Here, we describe a general seismic precursor signal for gas-driven eruptions, identified through correlation analysis of 18 well-recorded eruptions in New Zealand, Alaska, and Kamchatka. The precursor manifests in the displacement seismic amplitude ratio between medium (4.5-8 Hz) and high (8-16 Hz) frequency tremor bands, exhibiting a characteristic rise in the days prior to eruptions. We interpret this as formation of a hydrothermal seal that enables rapid pressurization of shallow groundwater. Applying this model to the 2019 eruption at Whakaari (New Zealand), we describe pressurization of the system in the week before the eruption, and cascading seal failure in the 16 h prior to the explosion. Real-time monitoring for this precursor may improve short-term eruption warning systems at certain volcanoes.

4.
J Biomed Mater Res B Appl Biomater ; 103(2): 313-23, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24846218

RESUMO

Coronary artery bypass grafting is one of the most commonly performed major surgeries in the United States. Autologous vessels such as the saphenous vein are the current gold standard for treatment; however, synthetic vascular prostheses made of expanded poly(tetrafluoroethylene) or poly(ethylene terephthalate) are used when autologous vessels are unavailable. These synthetic grafts have a high failure rate in small diameter (<4 mm) applications due to rapid reocclusion via intimal hyperplasia. Current strategies to improve clinical performance are focused on preventing intimal hyperplasia by fabricating grafts with compliance and burst pressure similar to native vessels. To this end, we have developed an electrospun vascular graft from segmented polyurethanes with tunable properties by altering material chemistry and graft microarchitecture. Relationships between polyurethane tensile properties and biomechanical properties were elucidated to select polymers with desirable properties. Graft thickness, fiber tortuosity, and fiber fusions were modulated to provide additional tools for controlling graft properties. Using a combination of these strategies, a vascular graft with compliance and burst pressure exceeding the saphenous vein autograft was fabricated (compliance = 6.0 ± 0.6%/mmHg × 10(-4) , burst pressure = 2260 ± 160 mmHg). This graft is hypothesized to reduce intimal hyperplasia associated with low compliance in synthetic grafts and improve long-term clinical success. Additionally, the fundamental relationships between electrospun mesh microarchitecture and mechanical properties identified in this work can be utilized in various biomedical applications.


Assuntos
Prótese Vascular , Teste de Materiais , Polietilenotereftalatos/química , Politetrafluoretileno/química , Humanos
5.
J Biomater Sci Polym Ed ; 25(6): 535-54, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24483140

RESUMO

The rapid growth of regenerative medicine and drug delivery fields has generated a strong need for improved polymeric materials that degrade at a controlled rate into safe, non-cytotoxic by-products. Polyurethane thermoplastic elastomers offer several advantages over other polymeric materials including tunable mechanical properties, excellent fatigue strength, and versatile processing. The variable segmental chemistry in developing resorbable polyurethanes also enables fine control over the degradation profile as well as the mechanical properties. Linear aliphatic isocyanates are most commonly used in biodegradable polyurethane formulations; however, these aliphatic polyurethanes do not match the mechanical properties of their aromatic counterparts. In this study, a novel poly(ester urethane) (PEsU) synthesized with biodegradable aromatic isocyanates based on glycolic acid was characterized for potential use as a new resorbable material in medical devices. Infrared spectral analysis confirmed the aromatic and phase-separated nature of the PEsU. Uniaxial tensile testing displayed stress-strain behavior typical of a semi-crystalline polymer above its Tg, in agreement with calorimetric findings. PEsU outperformed aliphatic PCL-based polyurethanes likely due to the enhanced cohesion of the aromatic hard domains. Accelerated degradation of the PEsU using 0.1 M sodium hydroxide resulted in hydrolysis of the polyester soft segment on the surface, reduced molecular weight, surface cracking, and a 30% mass loss after four weeks. Calorimetric studies indicated a disruption of the soft segment crystallinity after incubation which corresponded with a drop in initial modulus of the PEsU. Finally, cytocompatibility testing with 3T3 mouse fibroblasts exhibited cell viability on PEsU films comparable to a commercial poly(ether urethane urea) after 24 h followed by 85% cell viability at 72 h. Overall, this new resorbable polyurethane shows strong potential for use in wide range of biomedical applications.


Assuntos
Materiais Biocompatíveis/química , Poliésteres/química , Uretana/química , Animais , Materiais Biocompatíveis/efeitos adversos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Teste de Materiais , Camundongos , Poliésteres/efeitos adversos
6.
J Biomed Mater Res A ; 102(10): 3649-65, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24265203

RESUMO

The resistance to oxidation and environmental stress cracking of poly(carbonate urethanes) (PCUs) has generated significant interest as potential replacements of poly(ether urethanes) in medical devices. Several in vitro models have been developed to screen segmented polyurethanes for oxidative stability. High concentrations of reactive oxygen intermediates produced by combining hydrogen peroxide and dissolved cobalt ions has frequently been used to predict long-term oxidative degradation with short-term testing. Alternatively, a 3% H2O2 concentration without metal ions is suggested within the ISO 10993-13 standard to simulate physiological degradation rates. A comparative analysis which evaluates the predictive capabilities of each test method has yet to be completed. To this end, we have utilized both systems to test three commercially available PCUs with low and high soft segment content: Bionate PCU and Bionate II PCUs, two materials with different soft segment chemistries, and CarboSil TSPCU, a thermoplastic silicone PCU. Bulk properties of all PCUs were retained with minor changes in molecular weight and tensile properties indicating surface oxidative degradation in the accelerated system after 36 days. Soft segment loss and surface damage were comparable to previous in vivo data. The 3% H2O2 method exhibited virtually no changes on the surface or in bulk properties after 12 months of treatment despite previous in vivo results. These results indicate the accelerated test method more effectively characterized the oxidative degradation profiles than the 3% H2O2 treatment system. The lack of bulk degradation in the 12-month study also supports the hydrolytic stability of these PCUs.


Assuntos
Teste de Materiais/métodos , Poliuretanos/química , Peróxido de Hidrogênio/análise , Microscopia Eletrônica de Varredura , Peso Molecular , Oxirredução , Espectroscopia de Infravermelho com Transformada de Fourier , Resistência à Tração
7.
Macromol Mater Eng ; 299(12): 1455-1464, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25601822

RESUMO

Current synthetic vascular grafts have poor patency rates in small diameter applications (<6 mm) due to intimal hyperplasia arising from a compliance mismatch between the graft and native vasculature. Enormous efforts have focused on improving biomechanical properties; however, polymeric grafts are often constrained by an inverse relationship between burst pressure and compliance. We have developed a new, semi-interpenetrating network (semi-IPN) approach to improve compliance without sacrificing burst pressure. The effects of heat treatment on graft morphology, fiber architecture, and resultant biomechanical properties are presented. In addition, biomechanical properties after equilibration at physiological temperature were investigated in relation to polyurethane microstructure to better predict in vivo performance. Compliance values as high as 9.2 ± 2.7 %/mmHg x 10-4 were observed for the semi-IPN graft while also maintaining high burst pressure, 1780 ± 230 mm Hg. The high compliance of these heat-treated poly(carbonate urethane) (PCU) and semi-IPN grafts is expected to improve long-term patency rates beyond even saphenous vein autografts by preventing intimal hyperplasia. The fundamental structure-property relationships gained from this work may also be utilized to advance biomedical device designs based on thermoplastic polyurethanes.

8.
Soc Work ; 56(2): 191-2, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21553731
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...